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Grasp—A Graph Specification Language

Todd A Gross
Dept. of Computer Science and Electrical Engineering
University of Nevada, Las Vegas

October 13, 1988

1 Introduction

This paper is an introduction to Grasp, a language for defining and prototyping
graph theoretic constructs and properties associated with them. The language
is a specification language, which means that one gives only the necessary inputs
and desired outputs, and the translator generates the necessary algorithm.

Section 2 explains why Grasp was devised. Section 3 gives the syntax of
the language. Section 4 gives some examples of Grasp specifications. Finally,
section 5 discusses the relative strengths and weaknesses of the language.

We are currently developing a translator from Grasp specifications into C
functions.

2 Purpose of Grasp

Originally, Grasp was intended to bring together two until now distinct fields of
computer science: ptogram synthesis and paralle] computation. Due mainly to
time constraints, we have pared the Grasp project to development of a translator
from Grasp specifications to C functions. It is felt that later work could add
parallel code generation and optimisation via program synthesis theory with
only a minimum of rewriting of the present code.

The domain chosen for this research (and consequently for Grasp) is graph
theory. There were several reasons for choosing this domain:

o It is an abhstract domain, meaning there are relatively few details to keep
track of. This facilitates synthesis.

e It is highly amenable to parallelization, as graphs are just sets of ver-
tices and edges. Further, as graph theoty asserts properties of graphs,
rather than forces specific calculation!, we can assume independence of

! Actuslly. in nonprocedural languages (like Grasp and PROLOG). cealculation of results
and assertion of propetties are interchangeable paradigms. Thus a clause in PROLOG can he




calculation over the set of graph components. This greatly simplifies par-
allelisation, as we can forego dependency analysis [Wol88].

It is a rich domain. including several problems that are simple to con-
ceptualise but hard to calculate. One of these, the Travelling Salesmen
Problem, has already been used to test the power of specifie parallel pro-
cessing environments (KT88].

It is & practical domain, as many real problems are at base graph theo-
retic. For instance. the topologies of multiprocessor networks are easily
represented as graphs ([Hil85], Ch 3).

The present system, regardless of parallelism, is designed to allow one to
define a nontrivial set of graph theoretic properties. It uses a small but powerful
set of operators, as this is easier both to define and to use. Further, Grasp
specifications are nondeterministic, which means they define a property but
not how to compute it. This greatly facilitates parallel computation, beeanse
we are free to take advantage of all parallelisation inherent in the ptoblem.
Nevertheless, this must be left to later work.

3 Syntax

This section defines the set of legal specifications in Grasp, and illustrates the
definitions with simple examples.

3.1 Identifiers

Identifiers are names that are bound to specific Grasp objects. Most objects
in Grasp (or any other language, for that matter) have predefined names. For
instance, 3 is a predefined name for the integer value 3. Only two types of
objects in Grasp can (and must) be given names by the user: variables {§3.4)
and definitions (§3.5).

Identifiers in Grasp must begin with a letter, and can otherwise consist of
letters, digits, and underscores (.). They can be arbitzarily long, but if it's more
than 32 characters long, any extra characters are right truncated. They also
cannot be any of the 25 reserved words in Grasp. The language is case sensitive,
and all reserved words are lower case. The following are legal Grasp identifiers:

i 10 i 1 inTEGER integers
The following are not legal:

01 i integer

seen as calculating a set of valid answers or asserting which values would be logically consistent
with the glven axioms.
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Figure 1: A simple graph

3.2 Types

There are 9 types in Grasp, of which 7 are graph-oriented (the other two being
the standard types integer and boolean). In Section 1 we define the 9 types,
including the syntax for literals in each type, and in section 2 we define classes
of types that are used in defining operator syntax (§3.3), and give a hierarchy
of the type classes.

3.2.1 Type Definitions

Standard Types There are two standard types in Grasp: boolean and
integer.

The boolean type is exactly as in Pascal: there are two possible values,
represented by the literals true and false.

Integer values are limited by the C compiler one runs the synthesized rou-
tines on, in our case -23°—1 to 2%°. Note that while integers can take negative
values, there are no literals to represent negative integers. This is because neg-
ative integers are rarely needed in graph theoretic problems. Thus -3 is an
illegal construct, unless preceded by something that evaluates to an integer. In-
teger literals are base 10 numerals, without any intervening symbols (including
commas).

Graph Types To facilitate explaining the 7 graph types, we will use Figure 1.

Basic Components The basic components of graphs are vertices and
edges. The corresponding Grasp types are vertex and edge respectively.

A vertex literal is represented by a period immediately followed by an in-
teger. There are 6 vertices in the above graph, labelled 1 through 6. In Grasp
these would be written as .1, .2,..., .6. Note that we are not forced to label
vertices with consecutive integers, any 6 distinct nonnegative integers would do.
For instance, if we wanled (o use all primnes we might label them .2, .3, .5, .7,
.11, and .13.




An edge literal is represented by (vy, vy). where vy and v; are vertex literals.
For instance, the long vertical edge between .1 and .4 would be represented by
(.1,.4). Edges in Grasp are undirected tnotice the lack of arrows in Figure 1),
so (.4,.1) will also work, but Grasp converts this to the first form because it
stores all edges in nondecreasing otder.

In fact, (v, vy) is & general form for edges, meaning that v, and v; can be
any expression that evaluates to a vertex. For instance, if variable v is of type
vertex, then (v,.2) is a valid edge form.

Sets of Components Grasp also lets one define sets of basic components—
that is, vertex sets and edge sets. The corzesponding Grasp types are vset and
eset respectively.

Set literals are represented by { list }. where list is a nonempty set of either
vertex or edge literals separated by commas. For instance, {.3, .5, .6} isa
veet literal that represents a subset of the vertices in Figure 1. Again, the oxder
is not important,so {.6, .6, .3} will wzrk just as well, Eset literals work like
vaet literals, except with edges rather than vertices, so {(.3,.68), (.5,.68)}is
a literal that contains all edges in Figure 1 with both vertices in {.3, .5, .6}.

Due to the impossibility of maintaining uniqueness of set elements (that
is, preventing any elements of a set from repeating) at translate time, Grasp
allows sets to contain any sequence of elsments, as long as they are the tight
type. Forinstance, {.2, .1, .2} will be accepted by Grasp as a legal vset. We
are planning to add a routine that will make sets proper, but this must wait for
the rest of the translator to be constructed.

Note also that { list } is 8 general form for sets, so that {e1, (.1, v1)}is
a valid eset form, given o1 is an edge variable and v1 is a vertex variable.

Sets of Sets When determining properties of sets of elements, it is often
necessary to generate sets of sets. For instance, we say a set of vertices is
independent if no two distinct vertices in that set have an edge between them.
Thus, to determine if a vseot is independ=nt, we need to generate the set of all
2-element subsets of our vset. The Grasp types for these are vsetset for sets
of vsets, and esetset for sets of esets.

Syntax of sets of sets is the same as fcr any other set, the only difference is
the elements. A vsetset literal might lock like this:

{2, {1, 22y . (1, .2, .3} }

Thete are 3 elements, each of which is a vset literal. The structure is analogous
for esetset literals.

The general form for sets also works {-r sets of sets. Thus the following is a
valid vsetset form, assuming V is a vset. and v1 and v2 are vertex variables:

{v, {vi, 1., {v2} }

Note that there is no type vaetsetset for <ots nf vsetsets. Thisis becanse such
forms are only useful if one is interested i~ properties of sets of sets. The author
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is not aware of any theories about sets of sets of vertices or edges, therefore
there is no vsetsetset or esetsetset type. There is also not a general set extension
because of difficulties with dynamic typing.

: Graphs The final type in Grasp represents graphs themselves—which are,
naturally, the main focus of graph theory. The corresponding Grasp type is
graph.

A graph, mathematically speaking, is just a set of vertices and a set of edges
on those vertices. In other words, a vset and an eset. The general form for a
graph is { vset | eset } | where vset evaluates to a vset, and eset to an eset.
The graph literal to represent the graph in Figure I is:

{ {1 .2, .3, .4, .5, .6} | {(.1,.2), (.1,.9), (.2,.5),
(.3,.9), (.3,.8), (.5,.8)} }

Note that, unlike with edges and sets, the order of placement in graphs is
important. The vertexset must be to the left of the vertical bar, and the edgeset
must be to the right.

3.2.2 Type Hierarchy

The 9 Grasp types are mutually disjoint, which means that no value can belong
to more than one type. The form { } would appear to be a legal litersl
for any of the 4 set types, but it is not allowed in Grasp. Not only are the
9 types disjoint, they are also mutually incompatible, which means no value
can be coerced from one type to another. For example, there is no automatic
conversion of the vertex .1 to the vset {.1} .

Nevertheless, we can talk about a hierarchy of types, because certain oper-
ators will take values of more than one type. For instance, there is an operator
to find the number of elements in a set. This operator will work on values of
any of the 4 Grasp set types. We give 4 type classes that are used by Grasp
operators, then draw a Hasse diagram of the type hierarchy.

The 4 type classes are:

smallset A set of graph components—a vset or an eset
setset A set of sets—a vsetset or an esetset
set Any set, thus either a smallset or a setset

element Any type that can be an element of a set, thus a
vertex or an edge. or a vset or eset, as these are
elements of their corresponding setsets.

We will use these names when we talk about types of operatots and operands
(§3.3). Wedraw the type hierarchy in Figure 2, where 2 — y means “expressions
of type (class) z can evaluate to type (class) v:

R
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Figutre 2: The type class hierarchy

You'll note there are two extra type classes in Figure 2: varform and all-
typesform. A varform is any legal Grasp expression, regardless of which type
it evaluates to. An alltypesform is an expression that can conceivably evaluate
to any single Grasp type. In Grasp there are two such expressions: variables
{§3.4) and definition use (§3.3.7). They were added to the diagram for the sake
of completeness, it is assumed that the reader is familiar with this, at least on
a syntactic level.

3.3 Operators

Thete are 21 operations one can petform in Grasp, each of which has its own
operator(s). For each operation, we first give the syntax, where a type class
name in italics means an expression that evaluates to that type class. The type
class to the right of the arrow represents the return type class. Any expression
may be enclosed in parentheses () and retain its type class,

3.3.1 Arithmetic

inleger + integer — nteger
integer - inleger — infeger

The only two arithmetic operations allowed in Grasp are addition (+) and
subtraction (-). Arithmetic expressions are evaluated left to right, and both
operators are strictly binary. For example, 5 - 3 - 1 evaluates to 1, and
~ 3 - 1isillegal. Parentheses can be used to override feft to right evaluation.
306 - (3 - i) evaluates to 3.

L. R




3.3.2 Relational

(varform = rarform) —  boolean
(varform /= rarform) —  boolean

In Grasp, one can only test for equality or inequality of two expressions, as
“greater than™ does not apply well to vertices or edges. While one can have
any Grasp expression on either side of the reiational operator, the expressions
on both sides of the operator must evaluate to the same type. vset = eset won't
wotk, even though both are elements of class smallset, and may even have the
same syntax.

Notice that relational expressions are enclosed in parentheses. This avoids
the problem of a = b = c, where a, b, and c are all boolean variables. One can
enclose relational expressions in as many pairs of parentheses as one wishes, as
long as one has at least one pair.

3.3.3 Logical

not boolean —  boolean
boolean and bovlean ——  boolean
boolean or boolean ——  boolean

Logical opetrators in Grasp ate just like in Pascal. and and or evaluate left to
right, with no guarantee of early evaluation (that is, false and z and y may
or may not evaluate z and y though the expression will evaluate to false in any
case), and and has higher precedence than or.

3.3.4 Graphical

first edge —  vertez
last edge ——  vertez
vset graph —  wvset
eset graph —  esel

Curiously. out of 21 operations available in Grasp, only 4 specifically operate
on graphs or graph components—the rest operate on integers, booleans, sets,
or definitions. And there is no operator whose sole operands are vertices.

first and last take an edge and return one of the component vertices. For
instance, first (.1, .3) returns .1, and last (.1, .3) returns .3. Remem-
ber, though. that edges are put in nondecreasing otder by the Grasp translator,
so that tirst (.3, .1) will also return .1.

vset and eset take a graph and retnen the component vertex set and edgc
set respectivelv. Givenagraph G = { {.1, .2} : {(.1,.2)} }. vset Geval-
uates to {.1, .2} and eset Gto {(.1,.2)}. vset and eset are also the names
Grasp uses for the corresponding types, but the translator can discern which
use is intended fsee (§3.2.1)).

-1




3.3.6 Set Oriented

+ gel — integer
(element in set) ~— boolean
max sefsetl e gmallset
min setset ~—  smallset
null settype —  set
variable of set st boolean —  get
subsets.of smallset —  gselget

In the above description, when element and set appear in the same statement,
the types of the corresponding values must correlate. For instance, if the set
exptession evaluates to type vset, the element expression must evaluate to type
vertex. The same rule applies between smallset and setset. For instance, if the
smallset expression evaluates to type eset, the setsct expression must evaluate
to type esetset.

Size operator The first operator, #, is the size operator. That is, it tells you
how many elements are in a set. For instance,

$ {(.1,.9), (.2,.3)}
evaluates to 2, as there are 2 edges in the eset, but
' { {(-‘oo‘)l (.2,.3)} }

evaluates to 1, as there is 1 eset in the esetset.

Element operators The next three operators are element operators, which
means they operate on individual elements of the set. The first of these is the
in operator, which discerns whether a given element is in a given set?. Notice
that the expression is in parentheses, it was necessary to enclose in expressions
in parentheses to keep our grammar LALR(1)3. For instance. ((.2,.1) in
{C.1,.2), (.2,.3)}) evaluates to true. But note that in only evaluates 1
level, so that (.2 in { {.1} , {.2, .3} }) {verter in vsetset) will not work.

The other 2 operators. max and min. take a set of sets. count the number of
elements in each individual set. and return the set with the greatest and fewest
number of elements respectively. If there is more than one largest {or smallest)
set, it returns the first one it finds, which is nnt gunaranteed to be the first one
in the set. For example, if 5 = { {.1} , {.1, .2} , {.1, .2, .3} }. then
max S evaluates to {.1, .2, .3} and min S evaluates to {.1}.

2 Analagons the Pascal in operator.
YLater versions of Grasp should fix this kludge.

e
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Null set operator The next operator, null, defines a null set of type seitype,
which can be any of the 4 Grasp set types. Thus, for example, null vset defines
an empty vertex set.

Subset operator The next operator, the of .. .8t operator, is a subset oper-
ator, which means it generates a subset of the set given to it (as the set operand
just after the word of). It generates a subset by selecting those elements that
satisfy a boolean expression (given after the word st)*. Let me give an example:

Vot { {1}, {.1,.2} } st #v =1

Assume V is a variable of type vset. The set we’re taking a subset of is a
vsetset with 2 elements. Each element is bound to V, then tested to see if its
sige equals 1 (# V = 1). In this case, the test holds on the first element, but not
on the second, so the expression evaluates to a set containing the first element,
or { {.1} }.

Notice that the first operand is a variable of the proper element type. It
exists only to bind individual elements of the set to be evaluated by the boolean
function. Everywhere the operand appears in the boolean expression, it is re-
placed by an element of the set operand. But there is nothing that requires one
to use this operand. In particular:

variable of set st true
evaluates to set, and
variable of set st false

evaluates to the empty set of that specific type. This, by the way, is a way
of generating an empty set, although the null operator is the more preferable
means of generating a null set. Mostly, this form is used in guantificational
expressions (§3.3.6), but it can be used anywhere one wants to generate a
subset.

Power set operator The last operator, the subsets_of operator, generates
all subsets of a set—or if you prefer, the power set of a set. Clearly, the base
set must be a smallset, as we will generate a set of sets.

Earlier, we gave a definition of an independent set of vertices; and said that
we would have to generate all 2-element subsets of the vset to determine if it's
independent. Letting V be our vset, and V2 be a vset variable, we can generate
the 2-element subsets with this Grasp exptression:

Y2 of subsets.of V st # V2 = 2

This expression is the same as the one above, only we've replaced a vsetset
literal with a power set expression and changed the size of the desired vsets
from 1 to 2.

“g¢ stands for such that
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3.3.6 Quantificational

(forall subsetezp) [ boolean]) — boolean
(exists subsetezp) [ boolean) -— boolean

Quantificational exptressions are the most complicated ones in Grasp, but
they are also the most useful: they allow the user to determine complex proper-
ties of graphs using tools they are likely to be aiready familiar with. The word
subsetezp in the above syntax definitions refers to expressions using the of...st
operator.

The expression takes the variable the of...st expression used to bind ele-
ments of the set operand and binds elements of the subset to it. This is then
substituted into the boolean expression enclosed in brackets, one &t a time.
What the entire expression evaluates to depends, naturally, on whether the key
word is forall or exists.

If the key word is forall, then the expression evaluates to true iff the
boolean expression evaluates to true for each element of the subset, otherwise
it evaluates to false. If the keyword is exists, then the expression evaluates
to talse iff the boolean expression evaluates to false for each element of the
subset, otherwise it evaluates to true.

An example will help:

(forall v of {.1, .2, .3} st true)(v = .1]

First, look at the subsetezp. We want to generate the set of all elements in
{.1, .2, .3} such that true is trwe. As you'll recall from (§3.3.5.Subset),
this gives us back our original set. So our subsetezpis {.1, .2, .3}. Now we
take cach element of this set, bind it to v (assuming v is a vertex variable), and
evaluate the boolean expression v = .1. For the first element, this evaluates to
true, but for the other two it evaluates to false. Since it doesn’t evaluate to
true for every element in the subset, the entire expression evaluates to false.
But notice what happens when we replace forall with exists:

(exists v of {.1, .2, .3} st true)[v = .1]

Again, for the first vertex, the boolean expression evaluatss to true, and for the
second and third it evaluates to false. Since they didn't all evaluate to false,
the entire expression evaluates to true.

Now for a more complicated example. Remember that we defined a vertex
set to be independent iff for every pair of distinct vertices in the vertex set there
are no edges between them. This is the Grasp equivalent of our definition:

(forall vi of V st true) [
(forall v2 of V st v1 /= v2) [
not ((vi,v2) in eset G)

]




We will study this example mote closely in Section 4, but for now notice that we
have a nested quantificational expression. The syntax is important, the entire
quantificational expression must go inside the brackets.

To evaluate this, first we generate the outer subset, in this case our input
vset ¥V and bind a specific element of it to v1. Using this binding, we evaluate
the inner expression. We generate the inner subset, in this case ¥ minus vertex
v1, and bind an element of that set to v2. Then we evaluate the expression in
the innermost brackets, with both bindings in effect. In effect, we will generate
all pairs of vertices (vy, v3) such that v, and v; are in V and distinct from ecach
other. Thus, using nesting, we can have as many bound variables as we like.

3.3.7 Definition Use
defnid ( arglist ) — deftype

Definitions are the basic components of Grasp specifications, just as func-
tions are the basic components of C programs. And as one calls a function
in C, one uses a definition in Grasp. We will give the syntax of definitions in
(§3.8). For now we stick to using a definition: defnid is an identifier bound to
a definition, arglist is a nonempty list of arguments to the definition separated
by commas, and deftype is the type of the value the definition generates.

For instance, let’s assume we've created a Grasp definition of an independent
set. Our definition requires two pieces of information: the veet we're testing
for independence, and the eset where any edges between our vertices may lie.
Let’s assume this information is stored in varibles ¥ and E respectively, let's also
assume the definition is named independent. Then we can use our definition
on ¥ and E by writing

independent(V,E)

3.4 Variables

Variables in Grasp are identifiers that are bound at any one time to an arbitrary
value of a predefined type. In Grasp, three operations can be performed on a
variable: declaration, binding, and use.

Declaration binds an identifier to a storage location and a concomitant type.
A variable must be declared before it can he bound or used, and it cannot be
redeclared in the same definition (§3.5). Thus the scope of a variable is from
the point of declaration to the end of a definition. The syntax for declaration is

"typename identifier"

where typename is one of the 9 Grasp type names given in (§3.2). For instance,
“vertex v" declares a vertex variable and associates the identifier v with it.
Variables can be declared anvwhere in a definition, as long as its name has not
previously occurred in the definition. But there is no declaration statement, it
is done at the Rrst occurrence of the identifier in the definition.
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Binding assigns a value to a variable. In fact. only subset and quantifica-
tional expressions bind variables—where elements of sets are bound to a variable
for spplication to a boolean expression. In particular, it should be noted that
there is no assignment operator or statement in Grasp. In this way, Grasp vari-
ables are not like variables in procedural languages like C or Pascal. Typically,
Grasp variables are declared and bound at the same point in the specification.

Use binds the value associated with s variable to an expression. For example,
suppose that the value associated with variable x is .3. Then, in the boolean
exptession x in {.1, .2}, we use x to get the expression .3 in {.1, .2},
which can be evaluated. Until now, every occurrence of a variable in a sample
expression has been a use or binding. In the next section, we will start giving
the proper declarations before using or binding a variable.

3.5 Definitions

Definitions are the basic components in Grasp. Just as a C program consists
solely of a set of functions (plus global definitions). a Grasp specification consists
solely of 8 set of definitions. Like functions, definitions have a set of input
parameters and return a value. Like functions, definitions can be invoked by
giving their name followed by a parenthetically enclosed set of arguments.

But unlike functions, definitions do not do anything. They only specify the
desired output for a set of inputs, it is up to the Grasp translator to generate
functions that can generate the desired outputs.

The syntax of a definition is

id ( arglist -~> type ) : property

where id is the identifier bound to a definition, arglist is the set of input pa-
rameters, lype is the type of the value the definition evaluates to (like a return
value, except we'rte not “return”ing), and property is an expression evaluated
using the variables in arglist.

Let's start with a simple example:

vcount("graph G" -<> integer) : #(vset G)

This is a definition of the number of vertices in a graph G. The name of the
definition is vcount, there is one input to the definition G—which is the graph
we're counting the number of vertices of. We say that vcount is a defintion over
G. Notice that, since this is the first appeatance of G in the definition, we have
to declare it. In fact, this will be true of every input to a definition.

Definitions. like functions in procedural languages, generate one output.
Since the number of vertices in a graph is an integer, the output to vcount
is of type integer. We say vcount evaluates to an integer. the type our defini-
tion evaluates goes after the ~-> token and hefore the right parenthesis.

Then, after the colon, we have the actual definition: a Grasp expression
that evaluates to the proper type (presumably. though not necessarily, using
the inputs to the definition}. To distinguish the expression that embodies the
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definition from the entire definition, including the input and output, we some-
times call it a property of its inputs. Thus, in the case of veount, #(vset G) is
a property of G. The property can use any of the 21 Grasp operations, in any
combination where operator/operand types match, but it must include at least
one. Thus the following silly definition would be illegal:

[+ three illegally defines 3 to be a property of graph G *]
three("graph G" --> integer): 3

But the following equally silly definition is legal:

{»
new three legally defines 3 to be a property of graph G
*]

nev_three("graph G" --> integer): 2 + 1 [+ Uses the + operator *)

Notice that the preceding definitions had comments. Comments in Grasp
are like comments in C, except that the delimiters are [* and *) instead of /+
and ¢/,

4 Examples

We now give some examples of Grasp specifications. which show the full range of
expression in the language, and also its application to well-known and important
graph-theoretic problems.

4.1 Independent Set

Our first example is a correct Grasp definition of an independent set:

[e
independent() defines the concept of a set of vert-

ices V being independent with respect to a graph G
*]

independent (“vset V", "graph G" --> boolean) :
(forall “vertex vi" of V st true) [
(forall "vertex v2" of V st vi /= v2) [
not ((v1,v2) in eset G)
)

This is the definition we gave in (§3.3.8), with the proper declarations and
definition header. We used the same name as in (§3.3.7), but vou'll notice that
instead of an eset input we have a graph input. The reason is twofold: an
eset need not be associated with a graph, but we want to know if a vset 1 a
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particular graph is independent—that is, if any edges in the graph we took the
vertices from straddle any two of our vertices.

Let’s look at the definition line by line. Lines 1-4 are a comment document-
ing the definition. Line 6 is the definition header, and gives the information any
other definition will need to know to use it. It gives the definition name, the
two input paramaters, and the result type. Notice we have more than one input
parameter. As in most programming languages, when we use this definition we
must give the arguments in the same order as the parameters.

Lines 5-9 constitute the body of the definition. The body (or if you prefer,
property) is a nested quantificational expression. Lines 5 and 8 bind variables
vl and v2 to different elements of V: line 5 binds vi to an arbitrary element
of V and line 6 binds v2 to any element that isn’t the same as vi. Since each
variable is eventually bound to every member of its corresponding subset, these
2 lines generate the set of all nonequal pairs of vertices. Line 7 takes each pair
of vertices after binding and tests whether the corresponding edge exists in G.
This definition will evaluate to true only when no such edge exists in G for any
pair of distinct vertices in V. Which correlates to our English definition of an
independent set of vertices: that there be no edges between any two of them.

4.2 Vertex Degree

According to [BM76|, the degree of a vertex v is “the number of edges of G
incident with v, each loop counting as two edges.” Then in the Figure 3, .1 has
a degree of 3, and .2 has a degree of 1.

Figure 3: Graph G

A Grasp definition of vertex degree looks like this:

[»
The degree of a vertex v with respect to a graph G
is defined as the number of edges in G incident to
v, counting loops twice.

*]

degree("vertex v, "graph G" --> integer) :

#("edge e1" of eset G st (v = first e1)) +
#("edge 82" of eset G st (v last e2))

"

First of all, notice that this definition generates an integer. Although most
definitions will generate boolean values (as we are usually interested in whether
a property holds for a given graph (component)), many generate other values.
It is even possible to generate graphs, although the svntax is quite clumsy.
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Lines 8 and 9 constitute the body of the definition. Notice that they are very
similar to each other, the only differences are the names for the edge variables
and the operations performed on them. We could have used the same variable
on both lines, but we wanted to show that each line generates a distinct subset,
even though both use eset G as their base. Line 8 generates the set of all
edges that have v as its first component, then counts how many there are.
Line 9 counts how many edges have v as their last component. These counts are
then added together to get the incidence count, i.e. the degree. Although the
following definition looks like it would work (and is perfectly legal), it doesn't
count loops twice:

degree("vertex v", "graph C" --> integer) :
#("edge " of esot G st ((v = first e) or (v = last e}))

4.3 Path Between Vertices

An important concept in graph theory is the notion of a path, a set of edges
such that given a specific list of vertices, there is an edge containing the n'" and
n + 1'" vertices in the list, so long as n is a positive integer less than the number
of vertices in the list. For instance, given the eset {(.1,.3), (.2,.3)}, we can
create the vertex list .1 .3 .2. There is an edge between .1 and .3 (.1,.3),
and an edge between .3 and .2 (.2,.3). Figure 4 is a picture of the path.

Figure 4: The path {(.1..3), (.2..3)}

And this is a Grasp definition of a path between two vertices:

[»
A path to vertex v2 from vertex vi exists in graph G iff one
can create a list of vertices in G such that vl is the first
vertex, v2 is the last vertex, and any two consecutive vertices
comprise an edge in G.

*)
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path_to("vertex vi", "vertex v2", "graph G" --> boolean) :
( (v1,v2) 4in eset G ) or
(exists "vertex v" of veat G st ( (v1,v) in eset G) )) [
path_to(v, v2, {
“vertex w" of vset G st
(v /= v1)
|
"edge " of eset G st
not((vl = first f) or (vi = last f))

]

Notice that the definition is recursive, which is to say it uses itseli. Notice
though, that each time we use the definition, the graph gets smaller: we remove
a vertex from its vset, and all edges containing that vertex from its eset. Even-
tually we will either have (v1,v2) as a legal edge in G or we will run out of
edges that are connected to vi.

The basic structure of this definition is: there is a path from v1 to v2 if
either (a) (v1,v2) is an edge in the graph or {b) there is another vertex v
in the graph such that (vi,v) is in the graph and there is a path from v to
v2. The problem with the definition in this form is that it doesn’t force us to
make progress. If (vi,v3) were an edge in G, then path_to(v1,v2,G) could use
path to(v3,v2,G) (substituting v3 for v) which could then use path to(v1,v2,6)
(substituting v1 for v), which takes us back where we started. This is why we
reduce the graph with each use. Lines 11-17 generate the reduced graph by
using the general form for graphs®.

Earlier we mentioned that edges in Grasp are automatically canonized. The
main reason this is done is to make writing specifications easier. Note, for
instance, that we wrote (v1,v2) in eset G but not (v2,v1) in eset G in
the definition of path to. We didn’t have to, even though we don't know (and
can’t know in general) whether vi or v2 will appear first in the edge. This is
the advantage of canonizing edges: we never have to write a separate expression
for each possible edge form.

4.4 Connected Graphs

We say that a graph is connected if there is a path from every vertex in the
graph to every other vertex in the graph. Or more simply, if thete is only one
“piece” in the graph. All 3 graphs we've drawn so far have been connected
graphs, fignre 6 shows a graph that isn’t connercted, as there's no path from .1
to any other vertex.

Now we give the Grasp definition:

5This, by the way. is the clumsy svntax [ alluded to eatlier.
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Figure 5: A nonconnected graph

—

[»
A graph is defined to be connected if there is a path from
every vertex to every other vertex in the graph.

]

connected("graph 6" --> boolean) :
(forall "vertex vi" of vset G st true) [
(forall ‘“vertex v2" of vset G st (v2 /= v1)) (
path to(v1,v2,G)
]
]

Notice the similarity between this definition and our definition of independent.
Both operate over pairs of vertices, but connected tests for paths between ver-
tices, and independent tests for a lack of edges between vertices (which, by the
way, doesn’t mean that there can’t be paths between the vertices). Notice also
that we used the definition of path to in this definition—we used it to define a
path between two vertices.

By now, one sheald be familiar enough with Grasp syntax to be able to read
relatively simple definitions (like connected above) and be able to ascertain
their meaning.

5 Conclusions

We have not yet produced a Grasp translator, so the conclusions we reach are
based on the inherea: capabilities (or the lack thereof) of the language. In trying
to define properties ~f graphs using Grasp, we have found it to be a surprisingly
powerful language. If one can come up with a svstematic way of defining a
property, it appears one can use Grasp to define it. This is not to sav that
it is always easy to define snch a propertv, we have found that concepts that
natnrally belong tnz-ther sometimes need to he separated in the definition. For
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instance, if we want to say that an edge contains a vertex, we have to say it's
either the first component or the last one.

There are two main problems with Grasp as a language. The first is a lack
of special-purpose operators. For example, when defining path.to, it would
have been casier if we had an operator that subtracted a vertex from a graph
as defined in ([BM76] (§1.4)). But as long as the language has a good general
set of operators, it was felt that these operators could be added lster.

The second problem is more serious. The calculation involved in generating
a graph property appears to be enormous. because we tend to have to generate
and test all possible operands. Forinstance. in path_to, given a graph G. we will
generate G — v for all vertices vin G. And for each of these graphs we generate
G — v — v for all vertices v’ in G ~ v, and so on. That's O(n!) graphs we have
to generate! It would be much cheapet to use transitive closure to determine
which vertices are connected, but Grasp doesn't have matrix operations. For
now, we are content to have a genrsral-purpose experimental language.

But even with its apparent faults the language holds great promise. In
[Bal87], Douglas Baldwin discusses th~ failure of current programming lan-
guages to effectively handle parallelizable problems. He cites four problems
in particular, each of which would be handled by the complete Grasp system:

1. Data Dependencies Because the user cannot assign values to variables
or determine order of execution. he ot she cannot create data dependencies.
Thus we ate free to find and utilize all available parallelisation.

2. Data Parallelism As we've said before, graphs are merely sets of vertices
and edges, all of which are very similar to each other. Therefore, a high
degree of data parallelism will be inherent in a typical Grasp specification.

3. Granularity Because there are many parallel operations over sets of
highly similar data in the typical Grasp specification, and one has complete
data independence, one is free to divide the problem into components of
vety specific number and size. Granularity can closely match the specific
hardware and/or software one is operating under.

4. Generality Grasp is not a general purpose language. But it generates C
functions, thus it is possible to use the general purpose capabilities of C'.
In particular, it is possibie to call external C functions using definition use
syntax®.

It is hoped that further work will extend the present system to include
parallelism as originally intended.

8Grasp defintions will be translated direc:. 'n C functinns. and definition uses to € func-
tion calls. So as far aa the C' compiler is corczrned. they are completelv interchangeable.
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